Rabu, 24 Maret 2010

ASTRONOMI

Astronomi, yang secara etimologi berarti "ilmu bintang" (dari Yunani: άστρο, + νόμος), adalah ilmu yang melibatkan pengamatan dan penjelasan kejadian yang terjadi di luar Bumi dan atmosfernya. Ilmu ini mempelajari asal-usul, evolusi, sifat fisik dan kimiawi benda-benda yang bisa dilihat di langit (dan di luar Bumi), juga proses yang melibatkan mereka.

Selama sebagian abad ke-20, astronomi dianggap terpilah menjadi astrometri, mekanika langit, dan astrofisika. Status tinggi sekarang yang dimiliki astrofisika bisa tercermin dalam nama jurusan universitas dan institut yang dilibatkan di penelitian astronomis: yang paling tua adalah tanpa kecuali bagian 'Astronomi' dan institut, yang paling baru cenderung memasukkan astrofisika di nama mereka, kadang-kadang mengeluarkan kata astronomi, untuk menekankan sifat penelitiannya. Selanjutnya, penelitian astrofisika, secara khususnya astrofisika teoretis, bisa dilakukan oleh orang yang berlatar belakang ilmu fisika atau matematika daripada astronomi.
Astronomi Bulan: kawah besar ini adalah Daedalus, yang dipotret kru Apollo 11 selagi mereka mengedari Bulan pada 1969. Ditemukan di tengah sisi gelap bulan Bumi, garis tengahnya sekitar 93 km

Astronomi adalah salah satu di antara sedikit ilmu pengetahuan di mana amatir masih memainkan peran aktif, khususnya dalam hal penemuan dan pengamatan fenomena sementara. Astronomi jangan dikelirukan dengan astrologi, ilmusemu yang mengasumsikan bahwa takdir manusia dapat dikaitkan dengan letak benda-benda astronomis di langit. Meskipun memiliki asal-muasal yang sama, kedua bidang ini sangat berbeda; astronom menggunakan metode ilmiah, sedangkan astrolog tidak.



Cabang-cabang astronomi

Astronomy dipisahkan ke dalam cabang. Perbedaan pertama di antara 'teoretis dan observational' astronomi. Pengamat menggunakan berbagai jenis alat untuk mendapatkan data tentang gejala, data yang kemudian dipergunakan oleh teoretikus untuk 'membuat' teori dan model, menerangkan pengamatan dan memperkirakan yang baru.

Bidang yang dipelajari juga dikategorikan menjadi dua cara yang berbeda: dengan 'subyek', biasanya menurut daerah angkasa (misalnya Astronomi Galaksi) atau 'masalah' (seperti pembentukan bintang atau kosmologi); atau dari cara yang dipergunakan untuk mendapatkan informasi (pada hakekatnya, daerah di mana spektrum elektromagnetik dipakai). Pembagian pertama bisa diterapkan kepada baik pengamat maupun teoretikus, tetapi pembagian kedua ini hanya berlaku bagi pengamat (dengan tak sempurna), selama teoretikus mencoba menggunakan informasi yang ada, di semua panjang gelombang, dan pengamat sering mengamati di lebih dari satu daerah spektrum.


Berdasarkan subyek atau masalah

* Astrometri: penelitian posisi benda di langit dan perubahan posisi mereka. Mendefinisikan sistem koordinat yang dipakai dan kinematika dari benda-benda di galaksi kita.
* Kosmologi: penelitian alam semesta sebagai seluruh dan evolusinya.
* Fisika galaksi: penelitian struktur dan bagian galaksi kita dan galaksi lain.
* Astronomi ekstragalaksi: penelitian benda (sebagian besar galaksi) di luar galaksi kita.
* Pembentukan galaksi dan evolusi: penelitian pembentukan galaksi, dan evolusi mereka.
* Ilmu planet: penelitian planet dan tata surya.
* Fisika bintang: penelitian struktur bintang.
* Evolusi bintang: penelitian evolusi bintang dari pembentukan mereka sampai akhir mereka sebagai bintang sisa.
* Pembentukan bintang: penelitian kondisi dan proses yang menyebabkan pembentukan bintang di dalam awan gas, dan proses pembentukan itu sendiri.

Juga, ada disiplin lain yang mungkin dipertimbangkan sebagian astronomi:

* Arkheoastronomi
* Astrobiologi
* Astrokimia

Cara-cara mendapatkan informasi


Dalam astronomi, informasi sebagian besar didapat dari deteksi dan analisis radiasi elektromagnetik, foton, tetapi informasi juga dibawa oleh sinar kosmik, neutrino, dan, dalam waktu dekat, gelombang gravitasional (lihat LIGO dan LISA). Pembagian astronomi secara tradisional dibuat berdasarkan rentang daerah spektrum elektromagnetik yang diamati:

* Astronomi optikal menunjuk kepada teknik yang dipakai untuk mengetahui dan menganalisa cahaya pada daerah sekitar panjang gelombang yang bisa dideteksi oleh mata (sekitar 400 - 800 nm). Alat yang paling biasa dipakai adalah teleskop, dengan CCD dan spektrograf.
* Astronomi inframerah mengenai deteksi radiasi infra merah (panjang gelombangnya lebih panjang daripada cahaya merah). Alat yang digunakan hampir sama dengan astronomi optik dilengkapi peralatan untuk mendeteksi foton infra merah. Teleskop Ruang Angkasa digunakan untuk mengatasi gangguan pengamatan yang berasal dari atmosfer.
* Astronomi radio memakai alat yang betul-betul berbeda untuk mendeteksi radiasi dengan panjang gelombang mm sampai cm. Penerimanya mirip dengan yang dipakai dalam pengiriman siaran radio (yang memakai radiasi dari panjang gelombang itu).



* Astronomi energi tinggi

Astronomi optik dan radio bisa dilakukan di observatorium landas bumi, karena atmosfer transparan pada panjang gelombang itu. Cahaya infra merah benar-benar diserap oleh uap air, sehingga observatorium infra merah terpaksa ditempatkan di tempat kering yang tinggi atau di angkasa.

Atmosfer kedap pada panjang gelombang astronomi sinar-X, astronomi sinar-gamma, astronomi ultra violet dan, kecuali sedikit "jendela" dari panjang gelombang, astronomi infra merah jauh, oleh sebab itu pengamatan bisa dilakukan hanya dari balon atau observatorium luar angkasa.



Sejarah Singkat

Pada bagian awal sejarahnya, astronomi memerlukan hanya pengamatan dan ramalan gerakan benda di langit yang bisa dilihat dengan mata telanjang. Rigveda menunjuk kepada ke-27 rasi bintang yang dihubungkan dengan gerakan matahari dan juga ke-12 Zodiak pembagian langit. Yunani kuno membuatkan sumbangan penting sampai astronomi, di antara mereka definisi dari sistem magnitudo. Alkitab berisi sejumlah pernyataan atas posisi tanah di alam semesta dan sifat bintang dan planet, kebanyakan di antaranya puitis daripada harfiah; melihat Kosmologi Biblikal. Pada tahun 500 M, Aryabhata memberikan sistem matematis yang mengambil tanah untuk berputar atas porosnya dan mempertimbangkan gerakan planet dengan rasa hormat ke matahari.

Penelitian astronomi hampir berhenti selama abad pertengahan, kecuali penelitian astronom Arab. Pada akhir abad ke-9 astronom Muslim al-Farghani (Abu'l-Abbas Ahmad ibn Muhammad ibn Kathir al-Farghani) menulis secara ekstensif tentang gerakan benda langit. Karyanya diterjemahkan ke dalam bahasa Latin di abad ke-12. Pada akhir abad ke-10, observatorium yang sangat besar dibangun di dekat Teheran, Iran, oleh astronom al-Khujandi yang mengamati rentetan transit garis bujur Matahari, yang membolehkannya untuk menghitung sudut miring dari gerhana. Di Parsi, Umar Khayyām (Ghiyath al-Din Abu'l-Fath Umar ibn Ibrahim al-Nisaburi al-Khayyami) menyusun banyak tabel astronomis dan melakukan reformasi kalender yang lebih tepat daripada Kalender Julian dan mirip dengan Kalender Gregorian. Selama Renaisans Copernicus mengusulkan model heliosentris dari Tata Surya. Kerjanya dipertahankan, dikembangkan, dan diperbaiki oleh Galileo Galilei dan Johannes Kepler. Kepler adalah yang pertama untuk memikirkan sistem yang menggambarkan dengan benar detail gerakan planet dengan Matahari di pusat. Tetapi, Kepler tidak mengerti sebab di belakang hukum yang ia tulis. Hal itu kemudian diwariskan kepada Isaac Newton yang akhirnya dengan penemuan dinamika langit dan hukum gravitasinya dapat menerangkan gerakan planet.

Bintang adalah benda yang sangat jauh. Dengan munculnya spektroskop terbukti bahwa mereka mirip matahari kita sendiri, tetapi dengan berbagai temperatur, massa dan ukuran. Keberadaan galaksi kita, Bima Sakti, dan beberapa kelompok bintang terpisah hanya terbukti pada abad ke-20, serta keberadaan galaksi "eksternal", dan segera sesudahnya, perluasan Jagad Raya dilihat di resesi kebanyakan galaksi dari kita.

Kosmologi membuat kemajuan sangat besar selama abad ke-20, dengan model Ledakan Dahsyat yang didukung oleh pengamatan astronomi dan eksperimen fisika, seperti radiasi kosmik gelombang mikro latar belakang, Hukum Hubble dan Elemen Kosmologikal. Untuk sejarah astronomi yang lebih terperinci, lihat sejarah astronomi.


Astronomi di Indonesiaan>

Masyarakat tradisional

Seperti kebudayaan-kebudayaan lain di dunia, masyarakat asli Indonesia sudah sejak lama menaruh perhatian pada langit. Keterbatasan pengetahuan membuat kebanyakan pengamatan dilakukan untuk keperluan astrologi. Pada tingkatan praktis, pengamatan langit digunakan dalam pertanian dan pelayaran. Dalam masyarakat Jawa misalnya dikenal pranatamangsa, yaitu peramalan musim berdasarkan gejala-gejala alam, dan umumnya berhubungan dengan tata letak bintang di langit.

Nama-nama asli daerah untuk penyebutan obyek-obyek astronomi juga memperkuat fakta bahwa pengamatan langit telah dilakukan oleh masyarakat tradisional sejak lama. Lintang Waluku adalah sebutan masyarakat Jawa tradisional untuk menyebut tiga bintang dalam sabuk Orion dan digunakan sebagai pertanda dimulainya masa tanam. Gubuk Penceng adalah nama lain untuk rasi Salib Selatan dan digunakan oleh para nelayan Jawa tradisional dalam menentukan arah selatan. Joko Belek adalah sebutan untuk Planet Mars, sementara lintang kemukus adalah sebutan untuk komet. Sebuah bentangan nebula raksasa dengan fitur gelap di tengahnya disebut sebagai Bimasakti.


Masa modern

Pelaut-pelaut Belanda pertama yang mencapai Indonesia pada akhir abad-16 dan awal abad-17 adalah juga astronom-astronom ulung, seperti Pieter Dirkszoon Keyser dan Frederick de Houtman. Lebih 150 tahun kemudian setelah era penjelajahan tersebut, misionaris Belanda kelahiran Jerman yang menaruh perhatian pada bidang astronomi, Johan Maurits Mohr, mendirikan observatorium pertamanya di Batavia pada 1765. James Cook, seorang penjelajah Inggris, dan Louis Antoine de Bougainville, seorang penjelajah Perancis, bahkan pernah mengunjungi Mohr di observatoriumnya untuk mengamati transit Planet Venus pada 1769[1].

Ilmu astronomi modern makin berkembang setelah pata tahun 1928, atas kebaikan Karel Albert Rudolf Bosscha, seorang pengusaha perkebunan teh di daerah Malabar, dipasang beberapa teleskop besar di Lembang, Jawa Barat, yang menjadi cikal bakal Observatorium Bosscha, sebagaimana dikenal pada masa kini.

Penelitian astronomi yang dilakukan pada masa kolonial diarahkan pada pengamatan bintang ganda visual dan survei langit di belahan selatan ekuator bumi, karena pada masa tersebut belum banyak observatorium untuk pengamatan daerah selatan ekuator.

Setelah Indonesia memperoleh kemerdekaan, bukan berarti penelitian astronomi terhenti, karena penelitian astronomi masih dilakukan dan mulai adanya rintisan astronom pribumi. Untuk membuka jalan kemajuan astronomi di Indonesia, pada tahun 1959, secara resmi dibuka Pendidikan Astronomi di Institut Teknologi Bandung.

Pendidikan Astronomi di Indonesia secara formal dilakukan di Departemen Astronomi, Institut Teknologi Bandung. Departemen Astronomi berada dalam lingkungan Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA) dan secara langsung terkait dengan penelitian dan pengamatan di Observatorium Bosscha.

Lembaga negara yang terlibat secara aktif dalam perkembangan astronomi di Indonesia adalah Lembaga Penerbangan dan Antariksa Nasional (LAPAN).

Selain pendidikan formal, terdapat wadah informal penggemar astronomi, seperti Himpunan Astronomi Amatir Jakarta, serta tersedianya planetarium di Taman Ismail Marzuki, Jakarta yang selalu ramai dipadati pengunjung.

Perkembangan astronomi di Indonesia mengalami pertumbuhan yang pesat, dan mendapat pengakuan di tingkat Internasional, seiring dengan semakin banyaknya pakar astronomi asal Indonesia yang terlibat dalam kegiatan astronomi di seluruh dunia, serta banyaknya siswa SMU yang memenangi Olimpiade Astronomi Internasional maupun Olimpiade Astronomi Asia Pasific.

Demikian juga dengan adanya salah seorang putra terbaik bangsa dalam bidang astronomi di tingkat Internasional, yaitu Profesor Bambang Hidayat yang pernah menjabat sebagai vice president IAU (International Astronomical Union).

SISTEM KOORDINAT EKUATOR



SISTEM KOORDINAT EKUATOR




Sistem koordinat ekuator barangkali adalah sistem koordinat langit yang paling sering digunakan. Sistem koordinat ini merupakan sistem koordinat yang bersifat geosentrik. Mirip dengan sistem koordinat geografi yang dinyatakan dalam bujur dan lintang, sistem koordinat ekuator dinyatakan dalam asensio rekta dan deklinasi. Kedua sistem koordinat tersebut menggunakan bidang fundamental yang sama, dan kutub-kutub yang sama. Ekuator langit sebenarnya adalah perpotongan perpanjangan bidang ekuator Bumi pada bola langit, dan kutub-kutub langit sebenarnya merupakan perpanjangan poros rotasi Bumi (yang melewati kutub-kutub Bumi) pada bola langit.

Seperti halnya bujur, asensio rekta dihitung sepanjang lingkaran yang sejajar ekuator. Asensio rekta dihitung ke arah timur mulai dari titik Aries atau titik Vernal Ekuinok yang merupakan salah satu titik perpotongan antara bidang ekliptika dan ekuator langit, tempat Matahari berada pada tanggal 21 Maret (lihat gambar). Asensio rekta dilambangkan dengan "α", kadang-kadang disebut juga RA (dari bahasa Inggris Right Ascension) dan dinyatakan dalam satuan sudut (jam, menit, detik), dengan 1 jam = 360 derajad / 24 jam = 15 derajad. Dalam pengamatan praktis seringkali harga ini tidak diketahui bahkan harus ditentukan sehingga digunakan besaran lain yang bersifat lokal, yaitu sudut jam atau HA (dari bahasa Inggris Hour Angle).

Seperti halnya lintang, deklinasi diukur dari ekuator ke arah kutub. Deklinasi bernilai positif bila benda langit yang diamati berada di belahan langit utara, dan negatif bila benda langit yang diamati berada di belahan bumi selatan. Deklinasi dilambangkan dengan "δ" dan dinyatakan dalam satuan sudut (derajat, menit, detik).



DEKLINASI

Deklinasi, atau dalam Bahasa Inggris disebut Declination (Dec), dengan simbol δ, adalah istilah astronomi yang dikaitkan dengan sistem koordinat ekuator. Deklinasi merupalam salah satu dari dua koordinat bola langit pada sistem koordinat ekuator. Koordinat lainnya adalah Asensio rekta.

Deklinasi bisa dibandingkan dengan garis lintang, yang diprojeksikan ke bola langit, dan diukur dalam derajat ke arau utara dari ekuator langit. Oleh karena itu, titik di utara ekuator mempunyai deklinasi positif, dan titik di selatan mempunyai deklinasi negatif.

Contoh:

* Suatu objek pada ekuator langit mempunyai deklinasi 0°.
* Suatu objek tepat di atas kutub utara mempunyai deklinasi +90°.
* Suatu objek tepat di atas kutub selatan mempunyai deklinasi −90°.

Tanda pada deklinasi tetap ditulis sekalipun nilainya positif.




ASENSIO REKTA




Asensio rekta, atau dalam Bahasa Inggris disebut Right ascension (RA), dengan simbol α, adalah istilah astronomi yang dikaitkan dengan sistem koordinat ekuator. RA merupalam salah satu dari dua koordinat bola langit pada sistem koordinat ekuator. Koordinat lainnya adalah deklinasi.

RA bisa dibandingkan dengan garis bujur, diukur dari titik nolnya yang berada di titik Aries atau titik vernal ekuinoks. RA diukur dalam jam, menit, dan detik; dengan satu jam sama dengan 15 derajat.